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Where to start?

Start by reading:

lab/overview.md - A description of the xk codebase. A MUST-READ!
lab/lab1.md - Assignment write-up

lab/memory.md - An overview of memory management in xk
lab1design.md - A design doc for the lab 1 code

o  You will be in charge of writing design docs for the future labs. Check out
lab/designdoc.md for details.



File Information

Need a way to store the following information about a file:

e In memory reference count

e Whether the "file" is an on disk inode, or a pipe (later
assignment) File Info Struct

e Areference to the inode of the file

e Current offset
e Access permissions (readable or writable) [for when

we add pipes and file writeability later]




Kernel View
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There will be a global array of all the open files on the system (bounded by
NFILE) placed in static memory.




Process View
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Functions



filewrite and fileread

e Writing or reading of a "file", based on whether the file is an inode or a pipe.
o Note that file is in quotes. A file descriptor can represent many different things. You could
be reading from a file, or you could be reading from standard in or a pipe!

e Don't need to worry about the pipe part for this lab, just the inode files.
e Check out the functions readi and writei defined in kernel/fs.c



fileopen

Finds an open file in the global file table to give to the process
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fileclose

Release the file from this process, will have to clean up if this is the last reference
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filedup

Duplicates the file descriptor in the process’ file descriptor table
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filestat

e Return statistics to the user about a file
e Check out the function stati in kernel/fs.c



System Calls

e sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat

e Main goals of sys functions
o  Argument parsing and validation (never trust the user!)
o Call associated file functions



Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
e int argint(int n, int *ip): Gets an int argument
e int argint64_t(int n, int64_t *ip): Gets a int64_t argument
e int argptr(int n, char **pp, int size): Gets an array of size. Needs size to
check array is within the bounds of the user's address space
e int argstr(int n, char **pp): Tries to read a null terminated string.
You should implement and then use:
e int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid
file descriptor (in the open file table for the process).



Console Input/Output

"l

e The console device is just a special file called “console

e Code to handle device files is already handled for you
o Its information is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.
e | thought stdin/stdout/stderr were always available?

o  Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.



Where is X?

From the top level of the repo, run:

grep -R “X".

For better results, ctags is a useful tool on attu (man ctags) with support built
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a
function/type/macro/variable is defined when using ctags.


https://andrew.stwrt.ca/posts/vim-ctags/
https://www.emacswiki.org/emacs/EmacsTags#tags

Staging of work

1.
2.
3.
4.

The global file table
File functions
User/Process file table
System calls



